
SemPat: From Hyperproperties to Attack
Patterns for Scalable Analysis of

Microarchitectural Security

Adwait Godbole (adwait@berkeley.edu), Yatin A. Manerkar, Sanjit A. Seshia

ACM CCS 2024, Salt Lake City, US

110/17/2024

mailto:adwait@berkeley.edu

Example: Spectre V1 (BCB) Vulnerability

2

out-of-bound index i

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

Example: Spectre V1 (BCB) Vulnerability

3

Secret-dependent load

out-of-bound index i

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

Example: Spectre V1 (BCB) Vulnerability

4

Secret-dependent load

out-of-bound index i

Cache-based timing side-channel

In cache Not in cache

Array access

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

Example: Spectre V1 (BCB) Vulnerability

5

Secret-dependent load

out-of-bound index i

Cache-based timing side-channel

In cache Not in cache

Array access

SW-verification for microarchitectural security:
Is SW program susceptible to such attacks?

Two approach classes from previous work

6

Pattern-based Noninterference-based

void victimA (uint32_t i) {

 if (i < ARR_SIZE) {

 temp1_ = arr1[i];

 temp_ = arr2[temp1_ << CL_INDEX];

 }
}

void victimA (uint32_t i) {
 if (i < ARR_SIZE)
 temp_ = arr2[arr1[i] << CL_INDEX];
}

Precondition: 𝚽𝒑𝒓𝒆

Postcondition: 𝚽𝒑𝒐𝒔𝒕

speculation

dependent load address

e.g., Ponce de Leon [S&P 2023],
Mosier et. al. [ISCA 2022]

e.g., Cheang et. al. [CSF 2019],
Guarneri et. al. [S&P 2020]

This work: convert from NI to patterns

7

Pattern-based Noninterference (NI)-based

void victimA (uint32_t i) {

 if (i < ARR_SIZE) {

 temp1_ = arr1[i];

 temp_ = arr2[temp1_ << CL_INDEX];

 }
}

void victimA (uint32_t i) {
 if (i < ARR_SIZE)
 temp_ = arr2[arr1[i] << CL_INDEX];
}

Precondition: 𝚽𝒑𝒓𝒆

Postcondition: 𝚽𝒑𝒐𝒔𝒕

speculation

dependent load address

This work

e.g., Ponce de Leon [S&P 2023],
Mosier et. al. [ISCA 2022]

e.g., Cheang et. al. [CSF 2019],
Guarneri et. al. [S&P 2020]

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

8

Pattern-based Analysis

Execution embeds the pattern

9

Embeds

Variant

Gadget variant

Variant execution
does not embed!

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

void victimB (uint32_t i) {
 uint32_t temp1_ = arr1[i];
 if (i < ARR_SIZE)

 temp_ = arr2[temp1_ << CL_INDEX];
}

10

Embeds

Variant

Gadget variant needs a new pattern

void victimA (uint32_t i) {
 if (i < ARR_SIZE)

 temp_ = arr2[arr1[i] << CL_INDEX];
}

void victimB (uint32_t i) {
 uint32_t temp1_ = arr1[i];
 if (i < ARR_SIZE)

 temp_ = arr2[temp1_ << CL_INDEX];
}

Embeds

New pattern

Patterns do not generalize well

Hyperproperty-based Analysis

Hyperproperties formally characterize semantic security

Non-interference (NI)/information-flow-control: secret inputs do not affect public
(observable) outputs

11

private inputs

public inputs

private outputs

public outputs

Secure System

Hyperproperty-based Analysis

Hyperproperties formally characterize semantic security

Non-interference (NI)/information-flow-control: secret inputs do not affect public
(observable) outputs

12

void victimA (uint32_t i) {
 if (i < ARR_SIZE)
 temp_ = arr2[arr1[i] << CL_INDEX];
}

Microarchitecture

private inputs

public inputs

private outputs

public outputs

out-of-bounds
memory

cache line tags

Same non-interference property applies to both variants

13

void victimA (uint32_t i) {
 if (i < ARR_SIZE)
 temp_ = arr2[arr1[i] << CL_INDEX];
}

Microarchitecture

private inputs

public inputs

private outputs

public outputs

out-of-bounds
memory

cache line tags

void victimA (uint32_t i) {
 if (i < ARR_SIZE)
 temp_ = arr2[arr1[i] << CL_INDEX];
}

void victimB (uint32_t i) {
 uint32_t temp1_ = arr1[i];
 if (i < ARR_SIZE)
 temp_ = arr2[temp1_ << CL_INDEX];
}

Variant

Motivation: Orthogonal Advantages

Can we combine specification benefits of hyper-properties and
scalable verification of patterns?

14

Approach Pattern-based Noninterference-based

Pros Simpler verification
queries, scalable

Uniform specification,
Robust

Cons Sensitive to gadget
structure

Scalability

Contributions

● k-completeness condition: set of patterns covering all
non-interference violations up to a size bound k

● Pattern generation algorithm: grammar-based search to produce a
k-complete set of patterns

● Evaluation: (a) scalable pattern generation: new patterns,
(b) verification: upwards of 100x improvement over hyperproperties (for

models considered)

15

Outline

● Problem Formulation
○ Pattern Definition
○ Pattern Generation Problem

● Pattern Generation Approach

● Theoretical Guarantee

● Implementation and Evaluation

16

A pattern is a pair (w, φ)

Pattern template (opcode sequence): w
(1: Load) -- (2: Branch) -- (3: Load)

A boolean formula constraint: φ
addrdep ((1: Load), (3: Load)) && speculative ((2: Branch))

17

B2:BranchB1:Load B3:Load
address
dependencyspeculative

program order

A pattern is a pair (w, φ)

Pattern template (opcode sequence): w
(1: Load) -- (2: Branch) -- (3: Load)

A boolean formula constraint: φ
addrdep ((1: Load), (3: Load)) && speculative ((2: Branch))

18

B2:BranchB1:Load B3:Load
address
dependencyspeculative

program order

A pattern is a pair (w, φ)

Pattern template (opcode sequence): w
(1: Load) -- (2: Branch) -- (3: Load)

A boolean formula constraint: φ
addrdep ((1: Load), (3: Load)) && speculative ((2: Branch))

19

B2:BranchB1:Load B3:Load
address
dependencyspeculative

program order

constraint is a conjunction of predicates: p1 && p2 && p3 ...

Pattern Generation Problem

20

Microarchitecture (M)

Non-interference
Property (NI)

Pattern Grammar (G) and
bound d

Pattern Synthesis Flow

Template
Generation

Constraint
Specialization

Set of patterns (P)

Pattern Generation Problem

21

Microarchitecture (M)

Non-interference
Property (NI)

Pattern Grammar (G) and
bound d

Pattern Synthesis Flow

Template
Generation

Constraint
Specialization

Set of patterns (P)

e.g., transition
system, RTL

Pattern Generation Problem

22

Microarchitecture (M)

Non-interference
Property (NI)

Pattern Grammar (G) and
bound d

Pattern Synthesis Flow

Template
Generation

Constraint
Specialization

Set of patterns (P)

Search space
G: space of predicates
d: max. size of pattern

e.g., transition
system, RTL

Pattern Generation Problem

23

Microarchitecture (M)

Non-interference
Property (NI)

Pattern Grammar (G) and
bound d

Pattern Synthesis Flow

Template
Generation

Constraint
Specialization

Set of patterns (P)

Capture all NI
violations up to
skeleton size d

Search space
G: space of predicates
d: max. size of pattern

e.g., transition
system, RTL

Outline

● Problem Formulation

● Pattern Generation Approach

● Theoretical Guarantee

● Implementation and Evaluation

24

Outline

● Problem Formulation

● Pattern Generation Approach
○ Template Generation
○ Constraint-based Specialization

● Theoretical Guarantee

● Implementation and Evaluation

25

Pattern Generation

Template
Generation

Constraint
Specialization

1. Template Generation

Collect all depth d templates (opcode seq.) which falsify the NI property

26

Template

generation

Inputs

(Model, NI prop., depth)
Set of pattern

templates

1. Template Generation

Collect all depth d templates (opcode seq.) which falsify the NI property

add–add–add : SAFE
add–add–sub : SAFE
add–add–load : SAFE

...
branch-load–load : UNSAFE

27

Template

generation

Inputs

(Model, NI prop., depth)
Set of pattern

templates

1. Template Generation

Collect all depth d templates (opcode seq.) which falsify the NI property

add–add–add : SAFE
add–add–sub : SAFE
add–add–load : SAFE

...
branch-load–load : UNSAFE

28

Template

generation

Inputs

(Model, NI prop., depth)
Set of pattern

templates

Too overapproximate: add constraints to reduce false positives

Outline

● Problem Formulation

● Pattern Generation Approach
○ Template Generation
○ Constraint-based Specialization

● Theoretical Guarantee

● Implementation and Evaluation

29

Pattern Generation

Template
Generation

Constraint
Specialization

2. Constraint Specialization

Add constraints to make the template precise (reduce false positives)

30

Constraint

specialization

Patterns

with

constraints

Pattern template

with Grammar G

2. Constraint Specialization

Add constraints to make the template precise (reduce false positives)

Constraints are sourced from a predicate grammar

31

Constraint

specialization

Patterns

with

constraints

Pattern template

with Grammar G

Predicate Atom Meaning

datadep(inst1, inst2) Data dependency between inst1 and inst2

addrdep(inst1, inst2) Address dependency

... ...

speculative(inst) Instruction inst executes speculatively

highoperand(inst) Instruction operand is secret dependent

... ...

2. Constraint Specialization

Add constraints to make the template precise (reduce false positives)

1.br-2.load-3.load :: true

32

Constraint

specialization

Patterns

with

constraints

Pattern template

with Grammar G

2. Constraint Specialization

Add constraints to make the template precise (reduce false positives)

1.br-2.load-3.load :: true

1.br-2.load-3.load :: addrdep(2.load, 3.load)

33

Constraint

specialization

Pattern template

with Grammar G

Patterns

with

constraints

2. Constraint Specialization

Add constraints to make the template precise (reduce false positives)

1.br-2.load-3.load :: true

1.br-2.load-3.load :: addrdep(2.load, 3.load)

1.br-2.load-3.load :: addrdep(2.load,3.load) &&
 spec(1.br)

34

Constraint

specialization

Pattern

template

Patterns

with

constraints

Pattern template

with Grammar G

2. Constraint Specialization

Add constraints to make the template precise (reduce false positives)

1.br-2.load-3.load :: true

1.br-2.load-3.load :: addrdep(2.load, 3.load)

1.br-2.load-3.load :: addrdep(2.load,3.load) &&
 spec(1.br)

35

Constraint

specialization

Pattern

template

Patterns

with

constraints

Pattern template

with Grammar G

How do we add constraints without missing
non-interference violations?

Counterfactual atom addition
(Adding constraints without missing non-interference violations)

Should we specialize a pattern (w, φ) further by adding constraint c?

36

Executions matching pattern (w, φ)

Counterfactual atom addition
(Adding constraints without missing non-interference violations)

Should we specialize a pattern (w, φ) further by adding constraint c?

37

Executions matching pattern (w, φ)

Violations of non-interference

Safe to add c, when and
do not overlap.

Can be cast as a SAT/SMT problem!

2. Constraint Specialization

Constraint-based specialization: high level procedure

For (atom in candidates):
 If (adding counterfactual(atom) is SAFE)
 Add atom

38

Outline

● Problem Formulation

● Pattern Generation Approach

● Theoretical Guarantee

● Implementation and Evaluation

39

Theoretical Guarantee

Program C has a violation of skeleton size k if
C has a dependency-closed sub-sequence of size <= k that violates NI

40

Theoretical Guarantee

Program C has a violation of skeleton size k if
C has a dependency-closed sub-sequence of size <= k that violates NI

41

“If C has a small skeleton, some pattern in P will catch violation”

Generated patterns

Outline

● Problem Formulation

● Pattern Generation Approach

● Theoretical Guarantee

● Implementation and Evaluation

42

Evaluation

• Implementation: prototype tool SECANT (with UCLID5 [1] backend)
o Scala-embedded model specification DSL
o Pattern generation and verification engines

43[1] Polgreen, et. al. UCLID5: Multi-modal Formal Modeling, Verification, and Synthesis. CAV 2022.

Evaluation

• Implementation: prototype tool SECANT (with UCLID5 [1] backend)
o Scala-embedded model specification DSL
o Pattern generation and verification engines

• Evaluation on 3 abstract microarchitecture models:
o Silent Stores
o Dynamic Instruction Reuse
o Branch/STL Speculation

44[1] Polgreen, et. al. UCLID5: Multi-modal Formal Modeling, Verification, and Synthesis. CAV 2022.

Results: New Patterns

Spectre BCB+Cache:

Spectre BCB+CR:

Spectre STL+CR:

45

Results: Improved Verification Performance

Modified Kocher’s BCB/STL tests:

Replaced cache-based side channel
with a computation-based side channel.

46

Spectre BCB

Spectre STL

Verification Performance

Results: Improved Verification Performance

Modified Kocher’s BCB/STL tests:

Replaced cache-based side channel
with a computation-based side channel.

47

Spectre BCB

Spectre STL

Verification Performance

• ~100x improvement, increases with
test size

Results: Improved Verification Performance

Modified Kocher’s BCB/STL tests:

Replaced cache-based side channel
with a computation-based side channel.

48

Spectre BCB

Spectre STL

Verification Performance

• ~100x improvement, increases with
test size

• Microarchitectural complexity affects
hyperproperty but not pattern runtime

Results: Scalability of Generation
With microarchitectural complexity and grammar depth

49

Results: Scalability of Generation
With microarchitectural complexity and grammar depth

50

• Exponential scaling in microarch. parameters and depth
• Reasonable for abstract models

• Future work: Evaluate performance with RTL designs

Results: False positives

Patterns are prone to false positives

51

Results: False positives

Patterns are prone to false positives

52
Grammar exposes a precision-complexity tradeoff

Takeaways

Motivation: extend formal guarantees from hyperproperties to patterns

Generation Approach: template exploration + grammar-based
counterfactual constraint addition

Results: new patterns, order of magnitude verification runtime
improvement, pattern-grammar tradeoff

SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of
Microarchitectural Security. Adwait Godbole, Yatin A. Manerkar, Sanjit A. Seshia.

 ACM CCS 2024. Salt Lake City, UT.

Send mail! adwait@berkeley.edu 53

mailto:adwait@berkeley.edu

Questions?

54

	Slide 1: SemPat: From Hyperproperties to Attack Patterns for Scalable Analysis of Microarchitectural Security
	Slide 2: Example: Spectre V1 (BCB) Vulnerability
	Slide 3: Example: Spectre V1 (BCB) Vulnerability
	Slide 4: Example: Spectre V1 (BCB) Vulnerability
	Slide 5: Example: Spectre V1 (BCB) Vulnerability
	Slide 6: Two approach classes from previous work
	Slide 7: This work: convert from NI to patterns
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Hyperproperty-based Analysis
	Slide 12: Hyperproperty-based Analysis
	Slide 13: Same non-interference property applies to both variants
	Slide 14: Motivation: Orthogonal Advantages
	Slide 15: Contributions
	Slide 16: Outline
	Slide 17: A pattern is a pair (w, φ)
	Slide 18: A pattern is a pair (w, φ)
	Slide 19: A pattern is a pair (w, φ)
	Slide 20: Pattern Generation Problem
	Slide 21: Pattern Generation Problem
	Slide 22: Pattern Generation Problem
	Slide 23: Pattern Generation Problem
	Slide 24: Outline
	Slide 25: Outline
	Slide 26: 1. Template Generation
	Slide 27: 1. Template Generation
	Slide 28: 1. Template Generation
	Slide 29: Outline
	Slide 30: 2. Constraint Specialization
	Slide 31: 2. Constraint Specialization
	Slide 32: 2. Constraint Specialization
	Slide 33: 2. Constraint Specialization
	Slide 34: 2. Constraint Specialization
	Slide 35: 2. Constraint Specialization
	Slide 36: Counterfactual atom addition (Adding constraints without missing non-interference violations)
	Slide 37: Counterfactual atom addition (Adding constraints without missing non-interference violations)
	Slide 38: 2. Constraint Specialization
	Slide 39: Outline
	Slide 40: Theoretical Guarantee
	Slide 41: Theoretical Guarantee
	Slide 42: Outline
	Slide 43: Evaluation
	Slide 44: Evaluation
	Slide 45: Results: New Patterns
	Slide 46: Results: Improved Verification Performance
	Slide 47: Results: Improved Verification Performance
	Slide 48: Results: Improved Verification Performance
	Slide 49: Results: Scalability of Generation
	Slide 50: Results: Scalability of Generation
	Slide 51: Results: False positives
	Slide 52: Results: False positives
	Slide 53: Takeaways
	Slide 54: Questions?

